
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tomi Tuhkanen 
 

Software Platform Architecture for  
Laboratory Workstation Software 

Helsinki Metropolia University of Applied Sciences 

Master of Engineering 

Information Technology 

Master’s Thesis 

15 April 2013 

 



  

 

  

Author(s) 
Title 
 
 
Number of Pages 
Date 
 

 

Tomi Tuhkanen 
Software Platform Architecture for Laboratory Workstation 
Software 
 
69 pages 
15 April 2013 

Degree Master of Engineering 

Degree Programme Information Technology 

Specialisation option Mobile Programming 

Instructor(s) 
 

Peeter Kitsnik, PhD, Senior Lecturer 
Mika Salkola, M.Sc. (Eng.), R&D Manager 

 
The aim of the thesis was to design an architecture for a workstation software platform to 
control laboratory instruments and to decide technologies that were used with the platform. 
The platform needed to support multiple instruments with different functionalities and also 
support multiple simultaneous instruments. The application, based on the architecture, 
needed to function as a stand-alone application and as an automation service a. The plat-
form was to be developed with Microsoft .NET. 
 
The project was started with a study of existing architectures and design guides. An aim 
was to find some common factors and enterprise design patterns that would help in de-
signing a preliminary architecture. Brief technological studies were carried out to decide 
the technologies to be used with the software platform. 
 
Based on the study, the first draft of the architecture was designed and the implementation 
of the platform was started with the chosen technologies. The architecture design and im-
plementation was done in an iterative manner, so the design kept evolving through the first 
months of the implementation as specifications and the domain knowledge increased.  
 
As a result, modular and decoupled architecture seemed to fit well for the foundation of 
this kind of application. It gives enough flexibility, so the design can provide functionality for 
different use cases, and changes to design only affect small parts of architecture. This kind 
of architecture allows the application to be used in multiple different ways, for example as 
a centralized service or as a stand-alone application, and required modules can be used 
with an automation service. 
 
 
 
 
 

Keywords software architecture, modularity, design patterns, .NET 
technologies 

 



  

 

  

Työn tekijä 
Työn nimi 
 
Sivumäärä 
Päivämäärä 

Tomi Tuhkanen 
Ohjelmistoalusta-arkkitehtuuri laboratioriotyöasemaohjelmistolle 
 
69 sivua 
15.4.2013 

Tutkinto Master of Engineering 

Koulutusohjelma Information Technology 

Suuntautumisvaihtoehto Mobile Programming 

Ohjaajat 
 

Peeter Kitsnik, PhD, Senior Lecturer 
Mika Salkola, M.Sc. (Eng.) R&D Manager 

 
Työn päämääränä oli suunnitella ohjelmistoalusta-arkkitehtuuri, joka palvelee 
laboratoriomittalaitteita, sekä valita ohjelmistoalustassa käytettävät teknologiat. Ohjemiston 
pitää tukea monia erilaisia mittalaitteita, joilla on erilaisia toimintoja, sekä tukea monia 
mittalaitteita samanaikaisesti. Ohjelmiston pitää toimia itsenäisenä ohjelmana sekä 
automaatiopalveluna. Ohjelmistoalusta kehitetään Microsoft .NET Frameworkilla. 
 
Projekti aloitettiin tutkimalla olemassaolevia ratkaisumalleja ja suunnitteluohjeita. 
Tarkoituksena oli löytää yhteisiä tekijöitä ja malleja, jotka auttavat alustavan arkkitehtuurin 
suunnittelussa. Projektin alussa tehtiin myös teknologiatutkimuksia, joiden avulla päätettiin 
käytettävät teknologiat. 
 
Tutkimusten perusteella suunniteltiin ensimmäinen versio arkkitehtuurista ja aloitettiin 
ohjelmistoalustan toteutus. Arkkitehtuurin suunnitelma ja toteutus tehtiin iteratiivisella 
mallilla, joten suunnitelma muuttui ensimmäisten kuukausien aikana huomattavasti, kun 
spesifikaatiot tarkentuivat ja sovellusalueen tuntemus lisääntyi. 
 
Lopputuloksena modulaarinen ja löyhäkytketty arkkitehtuuri vaikuttaa sopivan hyvin 
ohjelmistolle, jonka pitää muokkautua eri käyttötapauksiin. Se antaa tarpeeksi 
joustavuutta, jolloin arkkitehtuuri voi tuoda vaaditut toiminnallisuudet kaikille 
käyttötapauksille ja muutokset arkkitehtuuriin vaativat muutoksia vain pienempiin osiin 
ohjelmistossa. Modulaarinen ja löyhäkytketty arkkitehtuuri sallii ohjelmiston käytön eri 
käyttötapauksissa, esimerkiksi keskitettynä palveluna, itsenäisenä ohjelmana ja 
automaatiopalveluna. 
 
 
 
 
 

Avainsanat ohjelmistoarkkitehtuuri, modulaarisuus, suunnittelumallit, 
.NET teknologiat 

 



 

 

  

Contents 

Abstract 

Tiivistelmä 

Abbreviations 

1 Introduction 1 

2 Software Qualities, Practices and Architectures 3 

2.1 Key Factors 4 

2.1.1 Modularity, Replaceability and Reusability 4 

2.1.2 Testability and Maintainability 7 

2.1.3 Understandability 9 

2.1.4 Parallelism 10 

2.2 Principles 12 

2.2.1 SOLID Principles 12 

2.2.2 Other Principles 14 

2.3 Software Architectures 14 

2.3.1 Hexagonal Architecture 14 

2.3.2 Clean Architecture 15 

2.3.3 Domain-Oriented Architecture 16 

2.3.4 Onion Architecture 18 

2.3.5 Drawbacks 19 

3 Overall Platform Architecture 20 

3.1 Back-End Architecture 23 

3.1.1 Back-End Modularity 24 

3.1.2 Back-End Internal Communication 26 

3.2 Front-End Architecture 27 

3.2.1 Modularity of the User Interface 28 

3.2.2 General Design and Regions 29 

3.2.3 Application Responsiveness 30 

3.2.4 Application Initialization 31 

3.2.5 Internal Communication of User Interface 31 

3.3 Platform Design 33 

3.3.1 Dependency Injection Container 34 

3.3.2 Instrument-Specific Modules 36 

3.3.3 Back-End Environments 38 

3.3.4 Independent Modules 39 



 

 

  

3.4 Back-End and Front-End Communication 40 

3.4.1 Façade 40 

3.4.2 Asynchronous Method Execution 42 

3.5 Back-End and Instrument Communication 45 

3.6 Back-End and Instrument Command Execution 45 

3.6.1 Protocol Execution 45 

3.6.2 Command Execution 47 

3.6.3 Response Handling 49 

3.7 Data Storage 51 

3.7.1 Database 51 

3.7.2 Repositories 54 

3.8 Security 54 

4 Namespaces and Solutions 55 

4.1 Namespaces 55 

4.2 Solutions and Project Structure 55 

5 Selected Technologies and Patterns 56 

5.1 Technologies 56 

5.2 Patterns 58 

5.2.1 Dependency Injection and Service Locator 58 

5.2.2 Model-View-ViewModel 60 

5.2.3 Service Layer 60 

5.2.4 Domain Model 61 

5.2.5 Façade 62 

5.2.6 Repository 62 

5.2.7 Mapper 63 

5.3 Anti-Patterns 64 

5.3.1 Anemic Domain Model 64 

5.3.2 Service Locator 65 

6 Conclusions 67 

References 70 

 

  



 

 

  

 

Abbreviations 

 

CI Continuous Integration 

CLR Common Language Runtime 

DI Dependency Injection 

EF Entity Framework 

GUID Globally Unique Identifier 

MEF Managed Extensibility Framework 

MVVM Model-View-ViewModel 

POCO Plain Old CLR Object 

SQL Structured Query Language 

UT Unit Test 

WCF Windows Communication Foundation 

WPF Windows Presentation Framework 

XAML Extensible Application Markup Language 

XML Extensible Markup Language 

 

 

 

 



1 

 

 

1 Introduction 

 

The software architecture of an application is the structure of the system, including sys-

tems decomposition into parts. The architecture defines decomposed parts connectivity 

and interaction mechanisms, and the guiding decisions and principles that were used in 

the design of the system.  

 

Software, like any other complex structure, must be built on a solid foundation. Failing 

to consider key scenarios and requirements, common problems and to prepare for fu-

ture changes can put the application at risk. Poor architecture may lead to software that 

is not able to support existing or future requirements or to software that does not have 

the required performance or is unstable. 

 

To help building foundations and unifying development, companies develop software 

platforms. A software platform is a set of subsystems, which form a common infrastruc-

ture. Related software applications are developed on top of that infrastructure. Plat-

forms enable faster delivery of products and updates. Furthermore they improve the 

quality of the software and reduce the common risks that are always associated with 

developing software. However, developing a platform has also a downside. The initial 

development of the platform requires more time, than just releasing an application 

without a platform. Platform design also requires design skills and knowledge of the 

domain. Even after the initial release it requires skill to keep the architecture structure 

up to date. 

 

In this project, I will first identify the key concepts based on common software goals 

and qualities. The key concepts try to tackle common problems that have arisen with 

modern software development. Some of the concepts are related to software, such as 

reliability and maintainability, and some to external risks, such as frequent changes in 

development resources. These key concepts then define what is required from the ap-

plication and are used as guidelines when defining the architecture structure. In addi-

tion, I will introduce architectures that have the qualities that were sought after for this 

application’s architecture. These architectures are generally well-known and provide 

good reference for my own design.  

 



2 

 

 

The main part of the project is the design of a software platform for laboratory instru-

ments. Understanding the architecture does not require any knowledge of laboratory 

field or laboratory instruments, as this kind of architecture design can be used as a 

general guideline in any kind of application.  

 

The requirements for the architecture to be designed include modularity, decoupling 

and domain orientation. Modularity defines that the application is composed of individ-

ual parts. Decoupling defines that the functionality of the application is separated from 

infrastructure, such as user interface and data storage. In domain-oriented architecture 

everything must revolve around the domain and the domain model layer must be iso-

lated from the infrastructure technologies. 

 

An aim also is to make the architecture simple to understand. Even developers do not 

need to understand the whole architecture, but they can already work with only limited 

knowledge.  

 

  



3 

 

 

2 Software Qualities, Practices and Architectures 

 

In modern corporate environments enterprise applications are data-centric, user-

friendly, scalable, distributed, component-based and mission critical. They have to sat-

isfy hundreds or even thousands of separate requirements. In brief, enterprise applica-

tions are highly complex systems. [20] Enterprise application has also a long lifespan, 

and during its lifespan, the application will have many additions and changes to its 

functionality. 

 

Professional Enterprise .NET defines the goals of the enterprise development as fol-

lows: reliability, flexibility, separation of concerns, reusability and maintainability. [5, 6] 

The ISO/IEC 9126 Standard defines a set of qualities required from a software product. 

These are: functionality, reliability, usability, efficiency, maintainability and portability. 

[4, 19] Lockheed Martin’s Quality Assurance Plan also defines two important qualities, 

timeliness and affordability. Timeliness means the ability that software system is made 

available to the customer when or before it is demanded. Affordability refers to the fi-

nancial cost of developing or acquiring and using the software. [1] 

 

From these goals and qualities the goals and qualities of a software platform to be de-

signed can be summarized as following: 

 The platform has to be reliable, meaning that the application needs to function 

correctly. 

 The platform has to be maintainable, so making corrections and adding new 

features should be possible. 

 The platform has to be efficient, so the application’s performance should be on 

appropriate level. 

 The platform has to be flexible and reusable, which means that changes should 

be easy to make and functionality should be able to be used in other parts of 

application or in other application. 

 The platform has to be delivered on time and within the budget. 

 

 

 

 



4 

 

 

2.1 Key Factors 

 

This chapter introduces some key factors, which should be taken into account when 

de-signing an enterprise application. It should be noticed that the key factors follow the 

same patterns that could be found in the goals and qualities that were introduced 

above. 

  

2.1.1 Modularity, Replaceability and Reusability 

 

The application should be composed of individual modules, which can either function 

on their own or function by using other defined modules. Modules are self-contained 

units of code. [5, 47] A module may be only a single class, or it may be a class library 

which contains multiple classes [4, 77]. A module should only contain one aspect of the 

desired functionality (single responsibility). Changing the functionality inside a module 

will not have effect on the functionality of modules that are using it. Nor will making any 

changes to the module require making any changes to the other modules. 

 

Modular replaceability is achieved by defining module interfaces. An interface defines 

what functionality is provided by the module and it must also implement all the func-

tionality defined in the interface. Modules are not aware of each other’s concrete im-

plementations, but modules refer to each other only with interfaces. [1] Figure 1 illus-

trates an unwanted situation, where modularity is not implemented correctly as the 

modules have references to concrete implementations. 

 

A B C

B C

D

 

Figure 1. Modules depending upon concrete implementations 

 

All the modules that implement the same functionality, also must implement the same 

interfaces. This means that the modules implementing the same interfaces are inter-

changeable. In figure 2. module B implements interface X and modules C and D im-



5 

 

 

plement interface Y. Module B is using a module with interface Y, and therefore it can 

either use module C or module D. 

 

A B C

Interface_X Interface_Y

Interface_X Interface_Y

D

Interface_Y

 

Figure 2. Modules depending upon interfaces 

 

Replaceability plays a large role in platform design. Most of the basic functionalities do 

not have to know what specific implementation they are using as they all have the 

same interfaces. A good example of the replaceability on a class level is the Repository 

data source as shown in figure 3. The Repository is responsible for providing methods 

for getting and updating the data from the data storage. By switching IObjectContext to 

either DbContextAdapter or XMLDataAdapter the data can be fetched from an XML file 

or from a database. Classes using the Repository will not know the difference and be-

cause ObjectContext is injected into the Repository, it is not aware either, where the 

data comes from. 

 



6 

 

 

Repository

IObjectContext IObjectSet

DbContextAdapter DbSetWrapper

XMLObjectSetXMLDataAdapter

DbContext DbSet

 

Figure 3. Abstraction of DbContext 

  

Modular replaceability also gives an additional benefit. Often design is made in an it-

erative way, which means that not all requirements are known in the beginning and the 

design keeps evolving over time. When doing design in this way, it may occur that 

some of the selected designs will not work with new requirements. When modules can 

be replaced, there is a big chance that just some part of the application must be 

changed, rather than doing a larger re-write.  

 

Another benefit that modular replaceability brings is an ability to update the application 

piece by piece. In the future, when new technologies or more efficient methods for exe-

cuting tasks are found, the application can be updated in smaller pieces, rather than 

updating the whole application at once, which is usually a bad idea. 

 

In general terms reusing means usage of base classes, common abstract classes and 

using the same module in a different part of the application without the need to rewrite 

the same code. Reusing is not to be mistaken as a copy-paste, which means the same 

code is just copied to multiple locations. When the same code is used in multiple loca-

tions, there is less code that can break. There is also less code to be changed when 

fixes are needed or new features are implemented. 



7 

 

 

 

Modular design also gives an opportunity to have more developers working more effi-

ciently with the same product. Tasks can be separated more easily in their own areas, 

so there is not as much overlap in the application code as there would be without mod-

ularity. Developers can also work on their own modules, and they do not have to be 

concerned of the implementation of the modules they are using.  

 

2.1.2 Testability and Maintainability 

 

The importance of maintainability and testability is shown on a maintenance stage of 

an application life cycle. As figure 4 illustrates, on an average maintenance covers 

about 60% of the application’s costs, as the rest covers development. With a good de-

sign, the application can have a longer lifespan, so maintenance can cover around 

80%. [3, 96] 

 

Development

Maintenanace

20 ... 60 %

40 ... 80 %

 

Figure 4. Development and maintenance costs 

 

Unit testing gives confidence that the application is working as intended all the time, 

even after making major changes or changing the 3rd party software that the application 

is dependent on. Unit tests can be thought of as an insurance, because there is a cost, 

as more development time has to be used to get that confidence of correct functionali-

ty. 

 



8 

 

 

Error correction

Enhancement 60 %

Adaptive maintenance

Refactoring

17 %

18 %

5 %

 

Figure 5. Maintenance cycle 

 

The maintenance part of the application life cycle is often thought to contain only error 

corrections, but in reality, most of the time is used to add and improve existing features 

(enhancement) as figure 5 shows. Maintenance tasks, be it either error correction or 

enhancement, can be divided into smaller portions. These portions are show in figure 

6. [3, 98] 

 

Define and understand the 
change

Review the documentation

Tracing logic

Implementation

Testing and debugging

Update the documentation

15 %

5 %

25 %

20 %

30 %

5 %
 

Figure 6. Maintenance tasks 

 

Unit tests reduce the amount of time needed for tracing the logic and for testing and 

debugging. Unit tests are extremely useful also as learning tests. This means that the 

developer learns how the application works through the tests. In this way, when some-

thing needs to be fixed, the developer finds a test that covers that specific area and 



9 

 

 

debugs it through. Then he or she creates a test that will show that the bug will occur. 

After that, implementing a fix and validating the corrected part is much easier. The de-

veloper can also rely on the fact that the newly made fix will not break anything else, as 

there are other tests covering the area where the fix has effect on. 

 

If developers are not used to write unit tests, some productivity will be lost during the 

initial development. As the initial development part is only a small part of the application 

life cycle, the lost productivity will be most probably gained back on the maintenance 

stage. Unfortunately there is no scientific research to prove benefits of unit testing. 

Usually benefit is illustrated in a similar diagram that is shown in figure 7. 

 

No unit tests With unit tests

UT 
impl.

UT 
design

D
evelo

p
m

en
t

D
evelo

p
m

en
t

Maintenance

Understand and verify fixes

Maintenance

Understand and verify fixes

Unit test updates

 

Figure 7. Time consumption with life cycle adjustment 

 

The best way to see the benefit of the unit tests is to check how often similar bugs re-

appears, as ideally they should not. Unfortunately there is no way to see the benefit of 

the unit tests immediately. 

 

2.1.3 Understandability 

 

Understandability should have a big part in the design. In software production, software 

developers change quite often, so it is important that a new developer can start doing 

productive work fast. This is achieved by following the known architectures and pat-



10 

 

 

terns and by following the KISS (Keep It Simple, Stupid) principle, which basically 

means that simplicity above all. [4, 131] 

 

If a developer is not familiar with the application’s architecture, he or she will familiarize 

himself or herself with the architecture faster when it follows the known principles. Plat-

form design brings one big advantage. When all the products use the same platform, 

they all have the same architecture. When a developer is familiar with one of the prod-

ucts, he or she knows immediately where functionalities are implemented in the other 

products.  

 

Selected technologies should be well supported and proven functional. With the tech-

nologies that are already proven functional, it is easier to find developers with a re-

quired skill set. In the programming world, new technologies come and go, so the new-

est unproven technologies should be avoided in enterprise applications, as they might 

disappear as fast as they came. 

 

2.1.4 Parallelism 

 

Processor clock speed improvement stopped around 2004 as can be seen in figure 8. 

Reason was mainly to physical issues, e.g. the processor produced too much heat or 

the processor has too high power consumption. 

 

 

Figure 8. Clock speed improvement over time [2] 



11 

 

 

 

After 2004, multiple processors and multiple cores (these can be either physical or vir-

tual) have become more common. This has been keeping the continuation of the per-

formance increase still on the same level as just the increase in the processor clock 

speed. This can be seen in figure 9. 

 

 

Figure 9. Effect of cores on the performance [2] 

 

To be able to use all available performance, software needs to be able to support all 

available cores. This means that the program must be able to execute code in parallel. 

Amdahl’s law, illustrated in figure 10, is often used in parallel computing to predict the 

theoretical maximum performance gain using multiple processors. This shows that the 

number of cores does not automatically bring any gain to performance. [26] 

 

 

Figure 10. Amdahl’s law [27] 

 



12 

 

 

Technologies are also becoming ready to support parallel applications out of the box. 

Using Microsoft .NET Framework as an example, it can be seen how threading and 

executing asynchronous operations are made much easier for developers. Since .NET 

Framework 4.0, developers have been able to use Task Parallel Library to easily exe-

cute functionality in parallel. .NET Framework 4.5 brought a more simplified approach 

to asynchronous programming with Async / Await. Windows Presentation Foundation’s 

controls also got support for cross-threading, which means that controls can be updat-

ed from the background thread. The default upper limit of the threads in .NET Thread 

pool, as summarized in table 1, has also increased with every new .NET Framework 

version. Figures may vary according to hardware and the operating system. [11, 805] 

 

Table 1. Default upper limit of threads in .NET thread pool.  

Version Default upper limit 

2.0 25 per core 

3.5 250 per core 

4.0 32-bit 1023 

4.0 64-bit 32 768 

 

Concurrent execution must already be thought of when designing the application as 

adding concurrency later is often extremely hard and very error prone. The easiest way 

to implement concurrency is to use locks, so only one thread at a time can use specific 

data. A more efficient way is to have no shared data. Each thread has a private copy of 

all the data it needs to perform the operation. Threads should also be working on inde-

pendent areas. In this way there is no need for synchronization, so the application is 

“wait-free”. [12, 18] 

 

 

2.2 Principles 

 

2.2.1 SOLID Principles 

 

When working with software where dependency management is handled badly the 

code can become rigid, fragile and difficult to reuse. A rigid code is a code which is 

difficult to modify. This includes changing the existing functionality or adding new fea-

tures. A fragile code is a code that is a likely source for new bugs, particularly those 



13 

 

 

that appear when another area of the code is changed. If one follows the SOLID princi-

ples, one can produce a code that is more flexible and robust, and that has a higher 

possibility for reuse. [28, 2] 

 

The SOLID principles are the following: 

 

Single Responsibility Principle 

 An object should have only a single responsibility. When a class does only one 

specified task, it is easier to understand and easier to modify. 

 An object should have only one reason to change. For example if data storage 

is changed, classes that get data from data storage should not change. [29, 

155] 

 

Open / Closed Principle 

 Entities (modules, classes, functions) should be open for extensions but closed 

for modifications. This usually means that objects can be inherited and the de-

rived classes provide more functionality. [29, 164] 

 

Liskov Substitution Principle 

 Objects in a program should be replaceable with instances of their subtypes 

without altering the correctness of that program. 

 For example Class B inherits class A. Who uses class A, can use class B with-

out breaking the program. [29, 180] 

 

Interface Segregation Principle 

 The dependency of one class on another should depend on the smallest possi-

ble interface. 

 Many client-specific interfaces are better than one general-purpose interface. 

Classes should always tell as little as possible about themselves. [29, 214] 

 

Dependency Inversion Principle 

 Classes should be depending upon abstraction (interfaces), not upon concrete 

classes. This way the concrete implementation is changeable. [29, 201] 

 



14 

 

 

2.2.2 Other Principles 

 

Low Coupling refers to the relationship of a class with another class. If classes have a 

high coupling, it means that changes to a class will result in changes to the other class. 

Low coupling means loosely coupled classes, so a class is independent of the other 

class. This can be achieved by using defined interfaces, so classes have no straight 

relationships between each other. High Cohesion means how well defined role and 

tasks a class has. With high cohesion a class only does a specified task. Low cohesion 

means that a class does multiple functionalities that are not related to each other. [4, 

79] 

 

In the Command-Query Separation Principle data storage communication is divided 

into commands and queries. Commands perform an action and queries answer a ques-

tion. Commands change the object states but do not return values. Queries answer a 

question, which means returning values without changing the object state. [1] 

 

The Don't Repeat Yourself (DRY) principle reduces the duplication of any information 

needed by the application and stores the same information only in one place. It reduc-

es the number of times one writes the code that accomplishes a given operation within 

an application. The You Are Not Gonna Need It (YAGNI) principle means that one 

should add any functionality to the application only when it is absolutely necessary and 

unavoidable. [4, 131] 

 

 

2.3 Software Architectures 

 

2.3.1 Hexagonal Architecture 

 

The Hexagonal architecture (aka ports and adapters architecture) is Alistair Cockburn’s 

architecture whose main aim is to decouple the core application from the services and 

the infrastructure it uses. Figure 11 shows the main application, ports (hexagonal sides 

of the application) and adapters that are connected to the ports. [9] 

 



15 

 

 

 

Figure 11. Hexagonal architecture [9] 

 

Each port can be connected with multiple adapters. This allows an application to be 

equally driven by users, programs, automated tests or batch scripts, and to be devel-

oped and tested in isolation from its run-time devices and databases. [9] 

 

2.3.2 Clean Architecture 

 

Clean architecture is Robert C. Martin’s articles about the need to clean up software 

architectures. Martin’s main point is that the code should also be decoupled from the 

infrastructure, such as user interface, database and other frameworks. In this way the 

architecture is not enslaved by any software vendor. Decoupling gives also other bene-

fits. When the infrastructure is decoupled, an application can easily be tested without a 

user interface or a database. These can also be replaced without affecting any other 

modules. [8] 

 



16 

 

 

 

Figure 12. Clean architecture diagram [14] 

 

Having a good architecture also gives an ability to be able to defer decisions. One 

should always try to have as much time as possible to make the final decision. For ex-

ample, with a good design, the decision about whether to use a database or a flat file 

system as a data storage should not be made during design. [10] 

 

The architecture should tell the developers about the system. They should be able to 

see the intention of the application, just by looking at the design and not at what 

frameworks have been used in the system. New programmers should be able to learn 

about use cases of the system, and still not know how the system is delivered. [15] 

 

2.3.3 Domain-Oriented Architecture 

 

In the domain-oriented architecture everything must revolve around the domain and the 

domain model layer must be isolated from the infrastructure technologies. Traditionally 

the domain-oriented architecture is presented in layers as seen in figure 13. 

 



17 

 

 

 

Figure 13. Domain-oriented architecture with layers [6] 

 

It is also common to represent the domain-oriented architecture with an onion instead 

of layers as seen in figure 14. This kind of presentation shows in a more defined way 

that the domain is in the center of the application and the connections to external com-

ponents are only from outer layers. 

 

 

Figure 14. Domain-oriented architecture represented with an onion [30] 

 

The domain-oriented architecture relies heavily on the dependency injection. In this 

way, for example, domain services do not have a reference to the repositories but only 

to the repository interfaces. These interfaces are often stored in the domain as con-

nected layers have reference to it. 



18 

 

 

2.3.4 Onion Architecture  

 

The onion architecture, illustrated in figure 15, can be seen as a combination of the 

hexagonal architecture and the domain-oriented architecture. In onion architecture 

there is a core that has the domain and application and domain services. [13] 

 

 

Figure 15. Onion architecture [13] 

 

The key concepts of onion architecture include: 

 The application is built around the object model. 

 Inner layers define the interfaces and outer layer implement them. 

 Coupling is directed toward the center. 

 The application core can be run separately from infrastructure. [13] 

 

The onion architecture is about making the domain / business logic independent of the 

'inferior' factors such as data-access, user interface or services. The onion architecture 

does not really define how the domain is developed, but it is adamant about protecting 

it from outside dependencies. 

 

 

 

 

 



19 

 

 

2.3.5 Drawbacks 

 

The most common drawbacks of multi-tier architectures described above are: 

 Complex designs 

 Reduced performance 

 Complex deployment [22] 

 

Multi-tier architectures have generally more complex designs, compared to monolithic 

architectures.  It is always good to keep in mind that architecture should be as simple 

as possible. If it is known already in the beginning that the application will not need to 

be changed after initial development, then there will be no need to make complex de-

signs. 

 

Complexity usually also means reduced performance. Implementation that is designed 

to do only one specific task is most often also fastest, but of course making this kind of 

implementation design is not always the best option. There has to be a balance be-

tween performance and having a design that is able to have changes that are possibly 

needed in the future. Physically separated tiers may also have a great impact on the 

performance and this is something that does not always come up during development 

time. 

  

Deployment of the application should always be as easy as possible. However if the 

application is distributed to multiple locations, it will be almost impossible to have a 

simple deployment. It is more likely that each separate location will require its own in-

stallation and defining configurations as to how to connect to other separate locations. 

 

  



20 

 

 

3 Overall Platform Architecture 

 

Designed platform has a combination of the hexagonal architecture and the domain-

oriented architecture. Figure 16 illustrates the back-end which contains application 

core, adapters and ports, and the infrastructure (outside part in figure 16) which con-

tains user interfaces, data storage and laboratory instruments. 

 

 

Adapters Interfaces 

1. Façade 
2. Web services 
3. Instrument A 
4. Instrument B 
5. DatabseContext 
6. FileSystemContext 

7. Application service interfaces 
(each service has an own inter-
face) 

8. IInstrument 
9. IDataContext 

 

Figure 16. Hexagonal architecture 

 

Platform’s architecture aims to make the application core independent of low-level 

functionalities, such as data storages, user interfaces, object-relation-mappings and 3rd 

party components. The benefits are that the architecture and the code become testa-

ble, changeable and understandable. 

 

Architecture relies heavily on the dependency injection principle. It means that high 

level modules should not depend upon low-level modules and both should depend up-

on abstractions (interfaces). These abstractions should never depend upon details and 

Desktop UI

Web
UI

Automation 
System

7

9

8

Database

Instrument 
A

3

6

1

2

Instrument 
B

4

File 
System

5

Adapters

Application 
Core

INNER

OUTER

OUTSIDEInterface

Adapter

Back End



21 

 

 

details should depend upon abstractions. The back-end architecture is domain-oriented 

and the key principle of the domain-oriented architecture is that the domain model de-

pends on nothing and everything depends on the domain model. 

 

The architecture can be divided into tiers which can be seen in figure 16: 

 Front end (green) 

 Back end 

 Data storage (red) 

 Instrument (blue) 

 

From the tiers, only the instrument is always physically separated. In the most common 

case, when the application is a standalone installation, front-end, back-end and data 

storage tiers are on the same computer. It is also possible to use centralized data stor-

age and then the data storage tier is also physically separated. When the back-end 

acts as a centralized service, then the front-end and the back-end are physically sepa-

rated and the data storage tier can also be physically separated, depending on whether 

centralized data storage is in use. Instead of using the concept about tiers, this archi-

tecture uses separation into back-end and front-end, as seen in figure 17. In general 

terms, the front-end is what the user can see and the back-end is what the user cannot 

see.  

 

Instrument 
A

Instrument 
B

User

Application Core

UI

Web 
Service

Automation

Web Client

Data Storage

Front End

Facade

Back End

 

Figure 17. Back-end and front-end areas 

 

Application functionality is in the back-end, so it is possible to execute the application 

logic without the user interface. This kind of design helps to separate user interface and 



22 

 

 

create more modular design. The front end’s (user interface) main purpose is to show 

data, help a user to create commands and execute the selected functionality. This kind 

of front end that does not have a data saving or heavy data processing functionality is 

called a hybrid client. 

 

The front end is only aware of the façade module from the back end. The rest of the 

back end functionality is a black box for the user interface. The façade module has only 

asynchronous methods. In this way it is impossible to use blocking methods and make 

the user interface not responsive while executing the back end functionality. Web cli-

ents and automation front ends use only the web service module. These methods are 

synchronous, as it is a common practice to handle synchronization in JavaScript. 

 

A software platform is a set of subsystems, which form a common infrastructure. The 

platform provides a common functionality from user authentication to data storage ac-

cess. Related software products are developed on top of that infrastructure. The plat-

form defines initial architecture structure and how related software products will be 

structured. 

 

Instrument B

Platform

Instrument A

Instrument 
Family 1

Instrument C Instrument D

Instrument 
Family 2

Instrument E Instrument F

Instrument
Family 3

 

Figure 18. Platform and more specific modules 

 

Platform modules are extended with instrument family and instrument specific modules 

as seen in figure 18.  Functionality is kept on a lowest possible level, so higher-level 

modules have the possibility to use the same functionality. When the same functionality 

is shared, adding new features and fixing old bugs will be done to only one location. 

 

  



23 

 

 

3.1 Back-End Architecture 

 

Back-end has domain-oriented architecture. In the domain-oriented architecture every-

thing must revolve around the domain and the domain model layer must be isolated 

from infrastructure technologies. 

Instrument

Application Logic

Web Services

Data Access

C
o

m
m

o
n

Domain

Insturment

Data Storage

Facade

C
o

n
tain

e
r

 

Figure 19.  Back-end layers 

 

The back-end architecture can be divided into layers. The application logic layer con-

tains services, calculations and execution logic. The domain itself is considered a layer. 

The infrastructure layer provides communication to external components. Data access 

module is communication to data storage, which is often also called the data access 

layer. The infrastructure layer also contains façade, web services and instrument. The 

façade and web services are communications to user interfaces and the instrument is 

communication to the physical laboratory instrument. The container is also considered 

a part of infrastructure as it has 3rd-party dependency injection container. 

 

  



24 

 

 

3.1.1 Back-End Modularity 

 

Instead of layers, it is more natural to divide back end into modules. Back-end modules 

have straight reference only to the domain module. Reference to other modules is upon 

interfaces and a reference to concrete implementation is through dependency injection. 

 

Instrument

Web Services

C
o

m
m

o
nDataContext

Repository

Data Storage

Domain

Application 
Services

Execution Engine

Instrument

Result Calculations

USB.dll

Facade

Reporting

C
o

n
tain

e
r

 

Figure 20. Back-end layers expanded to module level 

 

Figure 20 shows references between modules. A straight line is a reference to a mod-

ule and a dotted line represents dependency upon interface. 

 

The Domain has data models, which are called domain models. Domain model clas-

ses represent real world objects. Most of the domain models also map straight to data-

base tables.  The domain has also interfaces for classes in other modules and it has 

functionality that only needs other domain models. This kind of functionality is for ex-



25 

 

 

ample validation, rule creation and creation of new object. The Domain does not have 

references to any other modules. 

 

Application Services can be thought of as an entry point to the application and it 

manages its own concrete part of the application. Services communicate with other 

modules in the application. Services handle user authorization, fetching data from data 

storage, validating updates and processing other user requests. The module has a 

functionality to save data asynchronously to data storage. External components (user 

interface, web applications and web services) can use services through the façade and 

web services. 

 

The Execution Engine handles protocol execution, asynchronous command execution 

to the instrument and asynchronous response handling. The Instrument is an object 

model of the real laboratory instrument. It contains a mapping functionality for mapping 

domain commands to real instrument-level commands. The module has a functionality 

to find instruments that are attached to the computer. 

 

The Reporting module has a functionality to create reports and different kind of data 

exports. The most commonly used report format is the PDF, and the export formats are 

to either Microsoft Excel or in raw format to a text file, so users can parse data as they 

want. 

 

The Result Calculations module has a calculation and result handling functionality. 

Calculations are implemented in plug-in style, so in the application initialization, plug-

ins are loaded dynamically. Because of the plug-in design, this module also has do-

main models for results steps, which are used to save the wanted calculation steps to 

data storage. 

 

The Data Context is a connection and a model of the data storage. It has the data 

storage manipulation functionality. The module has configurations to configure map-

pings of domain models to data storage. The Data Context also implements the unit of 

work, which means that it keeps track of the changes and saves changes as a batch to 

data storage. The Repository provides a search and saving functionality to data stor-

age. It is a middle layer that abstracts data context from the application. 

 



26 

 

 

The Façade module’s main task is to handle all operations from the desktop user inter-

face to the back end. It is also responsible for creating asynchronous operations, decid-

ing what to do when data is ready (e.g. what to do if the view is not visible any more) 

and pre-fetching data based on previous actions. The Façade module has a factory, 

which is used to create new facades. Web Services is a handler for all operations to 

the back end from the web user interface. It executes functions directly from the appli-

cation services. 

 

The Container module has a dependency injection container and mapping information 

between classes and interfaces. The module also contains a mechanism to dynamical-

ly load all assemblies that are instrument-specific containers. The Container module 

has shared instance of the container that has platform instances. It is shared by the 

whole application. The module also has a creator for creating new containers based on 

instrument’s product identifier.  

 

The Common module has helper classes and functionality that can be used anywhere 

in the application. It does not have reference to any other module and it does not have 

any application specific functionality. The USB module handles sending and receiving 

data through USB interface. It doesn’t have any application related logic. 

 

3.1.2 Back-End Internal Communication 

 

Modules do not have any generic method to communicate with each other. Classes 

inside modules have events which are used to notify the other classes in other modules 

when some changes occur. 

 

The application service module has an event aggregator, which is used for sending 

messages between the same services. For example when a session is opened in one 

session service, it can send a message what was just done, to other session services 

instances. The communication can be seen in figure 21. 

 



27 

 

 

User Interface

Session Facade
Session List 

Facade

Session ServiceProtocol Service Session ServiceMessaging

Event EventEvent

Facade Action 

Manager

Session UI Session List UI

Event Event

Messaging

 

Figure 21. Internal communication 

 

The façade has a manager class which keeps track of simultaneous actions. The man-

ager class’s main function is to prevent executing too many simultaneous actions, 

which would slow down the computer. The manager class does not prevent a user from 

starting as many actions as he or she desires to, but only prevents the application from 

executing too many preloading or pre-fetching tasks. 

 

 

3.2 Front-End Architecture 

 

A desktop client is developed with Windows Presentation Foundation using the Model-

View-ViewModel pattern. When using the MVVM pattern, the functionality should be in 

the ViewModel, so adding the functionality to the code-behind must be well reasoned. 

The main concern is to keep the user interface responsive all the time. Performing an 

operation can take a long time, but during these operations the progress dialog is 

shown to the user. 

 

 

 



28 

 

 

3.2.1 Modularity of the User Interface 

 

The user interface is divided into modules. Each module contains Views, ViewModels 

and all the classes the module requires. Modules are designed in a way that they can 

function on their own as small applications if needed. The main application passes in-

stances of a façade or a façade factory and an instance of an event aggregator to the 

module when the module is initialized. The module composition is illustrated in figure 

22. By default, modules have views for all instruments and the content is loaded dy-

namically based on the technologies and features of the connected instrument. 

 

Module

View Models

Views

Classes

Facade

Event 

Aggregator

 

Figure 22. User Interface module 

 

The Main module has a main application where all other parts of the application are 

loaded from independent modules. The module also has a bootstrapper, which has the 

application initialization functionality. It initializes the service locator for the user inter-

face and dynamically loads all configured modules. 

 

The Common module has shared user controls for windows and ribbons. The com-

mon module has also base classes for ViewModels and generic helper classes. The 

module does not have reference to any other module of the application. The Localiza-

tion module has only translation information for controls. Localization data is stored in 

resource-files, and the controls refer to correct data by its identifier. 

 

Each module has a specific functionality. The Session module has views and func-

tionality for creating and modifying measurement parameters and configurations and 



29 

 

 

for handling and reviewing measured results. Session is a dataset, which encapsulates 

all this information to a single set of data. This is by far the largest user interface mod-

ule as it includes most of the functionality that the user uses by the application. All 

views and controls are in one module, because they are all needed for the application 

to perform as intended. The Session browser module has a view for listing and 

searching for sessions. It also has a functionality to store sessions into folder structure 

and to organize this structure. The Recent module has the functionality to list recently 

opened sessions. The Instrument module has an instrument list view and instrument 

information views. The Settings module has a settings view. Most of the settings are 

stored in the Back End, but some user interface related settings are handled in this 

module. 

 

3.2.2 General Design and Regions 

 

The main navigation is handled with tabs. When the application is loaded there is one 

home tab. This view has a list of recent session, functionality to create new sessions 

and basic information of the application. When a session is selected or a new one is 

created, a new tab is opened for that session. Also settings and instrument lists will be 

opened to a new tab.  

 

Prism (composite application library made by Microsoft) is used to provide region sup-

port for the user interface. Regions are used for placing content dynamically to correct 

locations. In this way, modules themselves do not define where views are places, but 

the main application decides what to do with the view it receives from the module. 

 

 

MainRegion

 

Tab

Header

 

Figure 23. Shell view and main view 

 

Shell is the term for the main window of the application. As shown in figure 23, it has 

only one region and no content at all. The main view has regions for a header and tab. 



30 

 

 

The header will include the main toolbar and the ribbon and the tab region will have tab 

control. Separation of the shell and the main view is used to decouple the main window 

initialization functionality from the actual application views. Normally a module contains 

a main view, which will be placed to the tab region, and the module may also contain a 

view that is placed to the ribbon. Figure 24 shows the session modules views.  

 

Menu View

Ribbon

 

Figure 24. Session modules views 

 

The module is responsible for sending the correct view when the main application re-

quests a view from the module. A module may contain a view that has any number of 

child views. For example the Session view has a menu that contains all the available 

views, and the selected view will be shown in the view region. The session module also 

has a ribbon view which is placed to the header region. The session browser module 

contains only one view that has a tree view of session and folder structure. 

 

3.2.3 Application Responsiveness 

 

As Windows Presentation Foundation is not known for its performance, attention must 

be paid to keeping the application responsive. This is done by pre-loading controls and 

required assemblies and keeping the application responsive in every situation. 

 

Per-loading of controls is done before the main window is created. This is done be-

cause Windows Presentation Framework lazily loads assemblies it requires to show 

the controls and this load operation takes a small amount of time when done for the 

first time.  Each module implements a method which returns a set of controls that re-

quire pre-loading. 

 



31 

 

 

Keeping the application responsive means that when a user does some action that 

requires showing new content, first the user is navigated to a new page, then a pro-

gress dialog is shown to the user and lastly new content is loaded on the background. 

When new content is being created, the data is being loaded on its own thread. De-

pending on the page and type of data it has, the progress dialog is removed either 

when the page is loaded or when the data is ready from the back end. In this way a 

user has a feeling that application is doing something all the time and it is not just 

freezing on longer operations. 

 

3.2.4 Application Initialization 

 

During initialization a splash screen is shown to a user. The background thread is re-

sponsible for loading data and when this thread is ready, the main window is created 

on main thread. The application initialization includes the following steps: 

 

 Show splash screen 

 Load found modules 

 Initialize the back end 

 Start data preload 

 Preload controls 

 Create main window  

 Hide splash screen 

 Show the main window 

 

The data preload makes predefined queries to the database. In this way most common 

queries are cached and this will improve the Entity Framework’s performance.  The 

data preload is continued on the background even after the main window is shown. 

Preload tasks are executed only when the user is not doing any actions that require 

fetching data from the back end. 

 

3.2.5 Internal Communication of User Interface 

 

The ribbon view and the session view will communicate, for example by a button click, 

with delegates. A delegate is a C# type that encapsulates a method (similar to a func-

tion pointer in C++). 

  



32 

 

 

The main application and modules exchange data with delegates and with an event 

aggregator. When a new module is loaded, it publishes an event with the event aggre-

gator. The event contains information of the module, including a delegate, which re-

turns the module specific views. The manager class is subscribed to that specific event 

and then decides what to do with the received information. In this way views are not 

loaded before they are actually needed. Figure 25 shows activity when an action for 

loading a view from another module is made. 

 

Modele A Manager Module B

Select Open action

Receive action event

Event

Process request

View

Delegate

Activate View

No

Set to specified location

View from Module A

Delegate

Send action event

Create View

New view

Find View

View

Create View

Event

 

Figure 25. Module activated from ribbon 

 

Modules use the event aggregator for exchanging information. When an action is per-

formed in a module, it publishes a new event. Another module has subscribed to that 

event and will perform an action based on the data it receives. For example in figure 

26, Module A notifies with the event aggregator that it would like to execute some ac-

tion. It will not know if any module is subscribed to that event, but in this case, module 

B is subscribed to the event and will execute some functionality. In some cases module 



33 

 

 

B might send another the event with event aggregator notifying that it has executed 

requested function, so then Module A will know that the request has been processed. 

 

View from Module A Modula A Module B

Click select

Execute function

Execute actionDelegate

Send event Receive eventEvent

 

Figure 26. Two modules performing functionality 

 

The modules do not know who is subscribed to the events, so it is the developer’s re-

sponsibility to make sure that the module subscribes only to events that it really needs 

and will not perform any unnecessary functionality. If this rule is not followed, the appli-

cation’s performance might suffer and it might result in unwanted behavior. 

 

When a module needs to notify something to the user, it will send a message with the 

event aggregator, rather than just showing a message box. In this way the application 

decides, depending on the notification type, how the user will be notified. 

 

 

3.3 Platform Design 

 

The platform level is designed to provide the basic functionality and services for the 

application to perform basic functionality. Platform level classes implement an inter-

face, and instrument-specific classes inherit platform level classes. Instrument level 

classes can also use platform level classes if all needed functionality is already on the 

platform level. This is illustrated in figure 27. 

 



34 

 

 

 

ProtocolRunner

Base

ProtocolRunner 

Instrument B

IProtocolRunner Interface

Platform

Instrument
ProtocolRunner 

Instrument A

 

Figure 27. Common instrument-specific inheritance 

 

Instrument-specific classes and modules may override all platform-level functionality if 

needed. In this way the platform defines only the architectural structure, but the instru-

ment-specific level defines all functionality. The instrument-level can also contain clas-

ses and modules that no other instrument can use. 

 

3.3.1 Dependency Injection Container 

 

The dependency injection container acts as a service locator and as a dependency 

injector. The DI container is not passed around to other classes, but it is only used 

when initializing a new session.  In this way, what classes are allowed to be used and 

allowed to do, can be handled better. 

 

Most of the classes have a new instance passed when the instance of the class is re-

quested from the container, but some instances are shared within the application. 

Shared components are loaded to the container when the container is created. 

 

Dependency injection container initialization includes the following steps: 

 

1. Create a new container with the correct catalog. 

2. Inject shared instances to the container 

a. Instrument service 

b. Messaging 

c. Logging 

3. Set serial number for the instrument. 



35 

 

 

 

Shared components are the instrument service which is responsible for maintaining the 

attached instrument list, logging and messaging. 

 

The dependency injection container has configuration definitions which contain the 

information of what concrete classes are returned when an implementation is request-

ed from the DI container. The platform level has shared configurations, and the instru-

ment specific level has its own additional configurations. These two configurations are 

combined to make a full type catalog. 

 

Configurations are loaded automatically when the application is initialized. Each con-

tainer module has module information that defines to which instrument serial number 

the container is associated. When a new session is created for the instrument, the cor-

rect type catalog for that instrument based on the instrument’s serial number will be 

used automatically. 

 

Session Service

Repository 

Factory

ObjectContext 

Creator

ISessionService

IRepoFactory

IObjectContext

Creator

Facade

DI Container

Use Create / Locate

DbContext

Adapter

GeneralDb

Context

SaveResult 

ObjectContext 

Creator

DbContext

Adapter

SaveResultDb

Context

 

Figure 28. Façade requests ISessionService implementation from DI container 

 



36 

 

 

When an implementation is requested from the DI container, a set of objects is created. 

Figure 28 shows that when the interface ISessionService is requested from the DI con-

tainer, a new session service is initialized. The session service uses interface 

IRepoFactory, so the DI Container will initialize a new repository factory. The repository 

factory uses the interface IObjectContextCreator and depending on the configuration, a 

selected creator will be initialized. 

 

3.3.2 Instrument-Specific Modules 

 

Each instrument can have instrument-specific services and repositories. Figure 29 

shows the platform and two instruments, service and repositories they have. Instrument 

specific services and classes can also use other classes that are defined only for that 

specific instrument. 

 

Instrument A 

SessionMain Form

Session View 

Model

Session Service Layout Service
Instrument B 

Layout Service

Instrument A 

Layout Service

Domain Model
Instrument B 

Domain Model

Instrument A 

Domain Model

Repository
Instrument B 

Repository

Instrument A 

Repository

Session View Layout View

Layout View 

Model

Instrument B 

Session

Layout View

Layout View 

Model

Facade FacadeFacade

ILayoutService

Database

General

DataContext
Instrument A 

DataContext

Instrument B 

DataContext

 

Figure 29. Instrument-specific modules 



37 

 

 

Instrument-specific domain models are only needed by data context, which gets the 

data from the database and by the class that uses instrument specific-data. For exam-

ple the protocol repository does not need to know any instrument-specific data. It can 

get and update data models without knowing instrument specific model implementa-

tions. 

 

Instruments often use only platform-level implementations because those already have 

all the functionality that is required. For example in measurement execution, which can 

be seen in figure 30, the whole service and most of the execution engine modules are 

from the platform. 

 

Execution 

Service

Repository

Execute Protocol

New data

New data delegate

Instrument A

Execute

Instrument A

User Interface

New data delegate

Execute Protocol

Saving 

DbContext

USB.dll

Instrument B

Instrument B

Execution Engine
Interface 

Instrument

Response 

Persistor

Database

 

Figure 30. Measurement execution 



38 

 

 

 

Most of the instrument-specific functionality is related to how the specified measure-

ment is mapped to instrument commands, and how responses are handled from the 

communication layer. 

 

3.3.3 Back-End Environments 

 

The user interface does not share one instance of the back end. Each user interface 

session has its own environment, which provides it with all the needed functionality. 

The environment is created with the dependency injection container. As mentioned in 

the section 3.3.1 when a new container is initialized, it is loaded with correct data. This 

is then used to create all needed services and classes that act as an environment. Fig-

ure 31 shows environments for the main application and two different sessions. 

 

User

UI

Get Protocol

Instrument A Session 

View

ViewModel

Facade

Instrument B Session

View

ViewModel

Get Protocol

Protocol Service

Protocol Service

Instrument B 
Protocol

Instrument A 

Protocol

Facade
Protocol 

Repository

Protocol 
Repository Data Storage

Facade Platform Service
Platform 

Repository

Session

Instrument B 

Container

General 
DataContext

Instrument A 

Container

Platform 

Container

Instrument A 
DataContext

Instrument B 
DataContext

 

Figure 31. UI and back-end environments 

 

Having a separate environment for each session provides a more efficient system. 

Services do not have to wait for other tasks to finish, because they have only one ses-

sion to serve. This kind of approach requires more concurrent processing power from 



39 

 

 

the computer. This is also closer to how web applications behave, as for web applica-

tions, new instances of the classes are created for each request.  

 

A session data can be considered immutable as an only valid state of the data is in the 

database. Data is fetched from the database and processed to objects. Then it is 

passed to the user interface and no local copy is kept in the back end. This kind of ap-

proach prevents multiple handlers from modifying the same data objects simultaneous-

ly. The back end prevents multiple environments from having editing access to the data 

by marking the session as locked. In this way the only one environment at a time can 

have edit access to the session data. 

 

The user interface may share the same data objects between different View Models, 

and then it is the user interface’s responsibility to be sure that modifications are notified 

between View Models correctly. Back-end services may notify when changes are made 

to some specific data, but again it is the user interface’s responsibility to validate that 

data it still has is valid.  

 

3.3.4 Independent Modules  

 

Having independent modules gives the advantage of using only the selected ones, 

instead of using the entire back end. All modules have a reference to the domain mod-

ule, so this must be always attached with the selected modules. 

 



40 

 

 

Execution Engine

Instrument

SiLa Web Service

Domain

Instrument

USB.dll

 

Figure 32. Selected modules with web service 

 

Figure 32 shows an example, where automation system would only need protocol exe-

cution functionality, so it uses execution engine, instrument and domain modules to get 

all the required functionality.  

 

 

3.4 Back-End and Front-End Communication 

 

3.4.1 Façade 

 

The user interface has only one access point to the back end and it’s through the fa-

cade. This design forces developers to follow the chosen architecture, as they cannot 

have direct access to the back end.  All functions in the façade are asynchronous and 

return values are returned with events. This way the developers cannot make blocking 

code accidentally. Figure 33 shows the user interface and the back end communica-

tion. 



41 

 

 

View

ViewModel

Model

Facade

Application 
Services

Domain 
Model 

event

event

 

Figure 33. User interface and back end shared models 

 

The user interface and the back end have both their own models. This prevents a situa-

tion when changing the model in the background thread would change the data in the 

UI (and vice versa). Both the user interface and the back end have their own event 

aggregators for internal communication. This prevents distributing too much information 

to outsiders, who do not actually need that information. 

 



42 

 

 

User Interface

Facade

Session

Protocol View

Layout View

Result View

... View

Ribbon

Delegate

Method / Event

Method / Event

Method / Event

Method / Event

Method / Event

Application 
Services

 

Figure 34. User interface and façade communication 

 

All views inside the session are connected to the same façade, so all the views listen to 

the same events. So when one view requests for an update, all the views that are con-

nected to the same façade will receive new data. This communication is illustrated in 

figure 34. In this way the data is not unsynchronized between views that show the data 

from the same session. 

 

3.4.2 Asynchronous Method Execution 

 

When a method from the façade is called, the façade will create a new task and exe-

cute the corresponding method from the service. The façade will get updates from the 

service with events and will pass these updates to the user interface with its own 

events. 

 

Asynchronous method execution has the following steps: 

1. User Interface listens to the façade’s DataReady event. 

2. User Interface executes the façade’s GetData method. 

3. The façade starts a new task that calls service layer. 

4. The service layer gets data from the data storage and processes it to the cor-

rect format. 

5. The service layer sends progress events with events. 



43 

 

 

6. Façade maps received data to models that the user interface uses. 

7. Façade processes DataReady event. 

a. If the session is active, the façade sends DataReady event with new da-

ta 

b. If the session is not active, event is saved to queue 

8. The user interface receives the DataReady event and updates controls with the 

new data 

 

UI Facade Service

Get Data

Return <T>

Get Data

Task<T>
Create

Start

Ready <T>

Return <T>

Status updates with EventAggregator
While updates

Status update

 

Figure 35. Common UI and back end communication situation 

 

Every task should be able to be cancelled in the middle of the execution in case the 

user makes an action that would not require the previous action any more. This is illus-

trated in a sequence diagram in figure 36. When a task is cancelled, a cancellation 

token is set to false. When the task is finished, the state of the token is checked, and if 

the token is cancelled, then the response is ignored. 

 



44 

 

 

UI Facade Service

Get Data

Get Data

Task<T>
Create

Start

Cancel

Ready <T>

Set Cancellation 
Source to Cancel

Reply is ignored

 

Figure 36. Cancellation of a task  

 

If a task is known to be a long running task (execution of the task takes a long time), 

then a cancellation is sent to the back end with a cancellation method, as shown in the 

sequence diagram in figure 37. 

 

UI Facade Service

Get Data

Get Data

Task<T>
Create

Start

Cancel

Cancel event with EventAggregator

Cancelled

Set Cancellation 
Source to Cancel

Reply is ignored

 

Figure 37. Cancellation of a long-running task. 

 

Short tasks can finish their execution, but the return value is not passed on to the user 

interface.  Processing of unnecessary data in the user interface would only slow down 

the application. 

 



45 

 

 

3.5 Back-End and Instrument Communication 

 

Communication channels to the instrument are encapsulated and easily changeable. 

The instrument class uses the interface IInstrumentCommunication for communication. 

Communication classes implement this interface. Most of the instruments connect to a 

PC with USB. 

 

Instrument

Physical 
Instrument

Simulator

USB.dll

<interface>

Insturment 

Communication

USB

Communication

WCF 

Communication
WCF Server

Back End Outside

 

Figure 38. Physical instrument and simulator communication 

 

By having this kind of encapsulation, the application is not aware of what kind of com-

munication channel is being used for communication. For example, using a simulator 

instead of a real instrument does not require any code changes, and a decision be-

tween the simulator and the real instrument can be made on run time. This is illustrated 

in figure 38. 

 

 

3.6 Back-End and Instrument Command Execution 

 

3.6.1 Protocol Execution 

 

A protocol is a set of command steps that specify what the laboratory instrument will 

do. Each step in the protocol may contain one or multiple instrument commands. De-

pending on the parent steps of the protocol steps, child steps might be executed multi-

ple times.  

 



46 

 

 

One instrument command may have one or multiple responses from the instrument. 

For example measurement commands may have from one to an infinite number of re-

sponses and some status commands have only one response. Responses arrive from 

the instrument at intervals starting from a few milliseconds. 

 

Protocol execution requires three modules from the back end. These modules are Exe-

cution Engine, Instrument and Domain. Figure 39 has classes and modules and their 

connections visualized. Some of the classes have functionality and some contain only 

data. 

 

Protocol Step

Executable 

Protocol Tree

Executable Tree 

Node

Protocol Runner

Tree Builder

Executable Step

Protocol

InstrumentCmd

Parser

Session

Execution 

Engine

Instrument 

Command

Command 

Mapper

Command 

Executor

Command 

Information

Domain

Execution Engine Instrument

Response

Result 

Processing

Instrument

 

Figure 39. Protocol execution related classes 

 



47 

 

 

Each class is aware of only the classes’ interfaces, not of concrete implementations. 

Concrete classes are used in figure 39 for the sake of simplicity.  Some classes are on 

the platform level and some on the instrument-specific level. For example, the execu-

tion engine and command executor are implemented on the platform level. There is 

only abstract protocol runner on the platform level and concrete implementations on the 

instrument-specific level. 

 

3.6.2 Command Execution 

 

The command executor is responsible for executing new commands in its own thread. 

It has a concurrent queue and it loops through that queue as long as it has new com-

mand items.  If some commands are blocking, then the executor waits until it is given 

the permission to continue. The result processor takes response strings to a queue and 

processes those in its own thread. Figure 40 shows modules and classes used in 

command execution. 

 

Execution 

Engine

Command 

Executor

Add commands to execution

Instrument

Mapper

USB.dll

Result 

Processor

Send string replies to processing

Data from instrument Event

Processed Reply Event

Get Commands

Map Protocol Steps to methods

Send / Recive

Executor invokes 
action, so it’s not 
aware truments 
implementation

Map reply strings to
corresponding commands

Instrument

Execution Engine

Execute Session

Command state changed Event

Protocol

Runner

Get Next Step

 

Figure 40. Command execution pipeline 

 

Command execution runs on three different threads. The execution engine invokes a 

new data event asynchronously, so that the event is also processed in its own thread. 

Figure 41 illustrates the command execution activity as a diagram. 



48 

 

 

Command execution threads have following functions: 

1. The thread is executing commands in the command executor’s queue. 

2. The thread is listening replies from the instrument. 

3. The thread is parsing responses in the response handler’s queue and the same 

thread also handles response in the execution engine. This ensures that re-

sponses are parsed and handled in order. 

4. The thread (or any number of threads) notifies the user interface and passes 

data to persistor-classes, which saves the data in the database in their own 

threads. 

 

Execute Session

Create Protocol Tree

Is Protocol Valid

Get Next Step

Add to Queue

Is User Action

Map to Commands

Send Action

No

Commands

Execute Command

Step

Handle Reply

Add to Process 

Queue

Handle Response

Parsed Response

Response string

User Action ResponseHandle Use Action

Is response valid Yes

Process stringParse Response

Parsed Response Event

Send Command

New Data Event

Parsed Response

New Response Event

Get Current Step

Step

Is Step Null

Response Check

Yes

No

No

Abort

No

Execution Engine Command Mapper Command Executor InstrumentProtocol Runner

Response Handler

Yes

Yes

No

Is Step Executed

Yes

Is Session executed

Session executed

Yes

Is reply valid

Yes

No

No
Yes

 

Figure 41. Command execution activity diagram 



49 

 

 

This kind of multi thread support makes the response processing non-blocking. This is 

extremely important when multiple instruments are connected to the same computer, 

as it is possible that responses arrive at very short intervals. It is not that crucial when 

the application finally handles the response and saves the data in data storage, but the 

application must be able to receive instrument responses all the time, so that it will not 

block instrument execution. 

 

3.6.3 Response Handling 

 

The response passes through multiple classes, each of them having a single responsi-

bility. Figure 42 shows classes that take part in handling the response. Some of the 

classes have actual functionality related to response handling and some act only as a 

middle-man, meaning that they just pass the response onwards. 

 

Data Repository 
Mapper

Execution EngineInstrument
Insturment 

Response Mapper
Result Handler Instrument Service

New data
Message in string

Message in string

Message in string

IResponse
New IResponse

New IResponse

Repository

Map IResponse
Save data

 

Figure 42. Message from instrument to database 

 

Each data processing is done in its own thread. In this way the data from the instru-

ment can be received without having to wait for processing and saving. Figure 43 

shows a more detailed sequence diagram of the whole data processing activity. 

 



50 

 

 

Execution Engine Instrument
Instrument Result 

Mapper
DalResult Parser UI

New Data

Add to Cache

Start message listener

Start new data processor

Process Data

Return new data

Send data to UI

Save data

Loop

Connect to instrument

opt

loop

opt

Execution Service

Start

Got new data

Can notify UI if 
needed

 

Figure 43. Response route 

 

Response handling has the following steps: 

1. Instrument sends a new data event. 

2. Execution engine receives event and sends received message to the result 

parser. 

3. Result parser queues message to cache. 

4. Result parser inspects the queue all the time and parses new messages. 

5. Queued message is parsed to instrument command. 

6. New data is returned to execution engine with DataReady event. 

7. Execution engine notifies with DataReady event. 

8. Data is passed to DB to be saved. 

9. UI notification is sent. 

 

Saving data in the data access layer is done in the data persistor. The data persistor 

has a concurrent queue where all threads add the data that needs to be saved. The 

data persistor takes a batch of items from the queue and saves it in a database. It con-

tinues this operation as long as there is data to be saved. When new data is added to 



51 

 

 

the queue and the saving process is not running, it will be restarted. In this way, there 

are no unnecessary threads waiting for the data in the background. 

 

 

3.7 Data Storage 

 

3.7.1 Database 

 

The database is designed to work with the Entity Framework using POCOs. When the 

Entity Framework is used, not all good database design practices can be followed. For 

example it is recommended that composite keys are not used, and Entity Framework 

prefers using unique identifiers as keys. The database can be roughly divided into sev-

en different areas, as shown in figure 44. 

 

Plate Protocol

Calculations

User Instrument

SessionAudit Trail

 

Figure 44. Database divided into areas 

 

The database is designed using Table per Type (TPT) inheritance and Table per Hier-

archy (TPH) inheritance. With TPT, each class has its own table and with TPH, the 

classes share one table and an extra column is added to the table, which defines the 

type of that row. The number of tables with TPH inheritance is kept at a minimum, be-

cause, for example if only one table would be used for all of the protocol steps, that 

table would have over 100 columns and most of the types use only under 10 columns. 

The benefit of TPH is much better performance and a smaller number of tables. Figure 

45 shows some selected tables and what kind of inheritance is used in them. 

 



52 

 

 

Step

Protocol Step

Measurement 

Step

Photometric 

Measurement 

Step

Fluorometric 

Measurement 

Step

Luminometric 

Measurement 

Step

Table per Type

Table per Hierarchy

General 

Protocol Step

 

Figure 45. Table per Type and Table per Hierarchy inheritance 

 

Figure 46 shows parts of the layout and the protocol areas and how their tables are 

linked together. In total the database has approximately 55 tables, and most of them 

use TPT inheritance. 



53 

 

 

Results

WellLocations

Sessions

Steps

LuminometricMeasurementSteps

Wells

GeneralReaderProtocolSteps

Protocols

PhotometricMeasurementSteps

LuminometricSpectrumMeasurementSteps

ResultSteps

ProtocolSteps

MeasurementSteps
Samples

PlateLayouts

FluorometricMeasurementSteps

Replicates

Plates

WellGridPoints

SampleSampleGroups

PlateTemplates

 

Figure 46. Plate layout and protocol steps table inheritance (only a few selected tables) 

 

The database is created with the SQL script and POCOs are maintained manually. In 

this way, a correct database structure can be ensured (rather than let Entity Framework 

to create the DB). Because POCOs are not Entity Framework related, a change away 

from Entity Framework can be done if needed. 

 

The database uses globally unique identifiers (GUID) as keys. Besides being a rec-

ommendation from Entity Framework, it gives one benefit. Using GUIDs ensures that 

the IDs will not collide even when data is inserted from multiple threads at the same 

time. GUIDs also make data import to an existing database easier, as there is no need 

to create new IDs for existing data. 

 

Since the database is large and it has plenty of inheritance and links, the database 

context has to be split into smaller parts. For example, the context used for saving has 

only reference to Step, Protocol Step, Well and Result tables. This improves the per-



54 

 

 

formance of the Entity Framework. Other performance improvement is gained by fetch-

ing the data using views, rather than fetching the data from original tables. Using views 

is only possible when the data is only shown to the user, but not when the data needs 

to be updated. 

 

The database is designed to be used with LocalDB, which is management-free edition 

of Microsoft SQL Server Express. The database also works with Microsoft SQL Ex-

press and with full Microsoft SQL Server. 

 

3.7.2 Repositories 

 

The Entity Framework’s DBContext is abstracted with the ContextAdapter. In this way it 

can be exchanged to any other data storage technology. Each instrument and the plat-

form have its own Context. Some Entities have their own repositories and some are 

divided per object graph to keep the number of repositories lower. 

 

A Context is always disconnected after data is loaded, so lazy loading is not used. 

Each repository has included methods that can define which children will be loaded. If 

the data is updated, the entities must be attached to the context. 

 

 

3.8 Security 

 

The application uses Windows authentication for user authentication. In normal use, 

login is not required when the application starts as the user has already logged into the 

operation system with a valid password. There is also a version of the application that 

will require the user to login in when the application is started.  

 

When a user logs in (or starts the application), a new rights package is made from the 

user’s group rights. This package is passed to the current thread. When services per-

form user authorization, they get the current user from the thread and do checks using 

a security component. The rights package is only updated when the user restarts the 

application. 

 



55 

 

 

4 Namespaces and Solutions 

 

4.1 Namespaces 

 

A namespace lets the user to organize the code and gives him or her a way to create 

globally unique types. They also provide assistance in avoiding name clashes between 

two sets of code. 

 

Microsoft naming guideline recommends the following: [21] 

 

CompanyName.TechnologyName[.Feature][.Design] 

 

As the platform is developed with a single technology (Microsoft .NET) and it can easily 

be divided into its own parts, it uses a little different naming. 

 

Company.Product.Family.[.Instrument].ModuleName 

 

The naming guideline in this architecture strictly follows software project structure, so 

it is always clear in which project the namespace is.  

 

 

4.2 Solutions and Project Structure 

 

Each instrument and the platform have its own Visual Studio solution for the back end. 

Instrument solutions also have platform projects and instrument family common pro-

jects included in their solutions. The front end has its own solution and it has the back 

end added to same solution as library references. 

  

There is also a solution that has the front end and all back end projects (the platform 

and instruments). This kind of “Keep everything” solution is used for continuous inte-

gration and it is also used by developers when making API changes and refactoring. 

 



56 

 

 

All solutions can be built with one command. The required libraries and 3rd party com-

ponents are also included in version control, so there is no need to install anything on 

the development machine.  

 

To get the environment running on the development machine, these are the required 

steps: 

 

1. Get the latest codes from version control. 

2. Execute the database creation script (requires MSSQL Server 2012 Express). 

3. Build solution. 

 

When the solution is always ready to be built, developers will not need to use time to 

copy new library files and compile multiple solutions. This is especially useful when a 

developer comes back to do some work with a project after being away from it for a 

while. It is quite frustrating to use hours to try to get the development environment to 

work again. 

 

5 Selected Technologies and Patterns 

 

5.1 Technologies 

 

This chapter provides a brief description of the technologies used with the application. 

All the technologies were decided to be chosen from Microsoft .NET stack. This en-

sures good support for the products in the future. 

 

.NET 

.NET is a well supported and extremely versatile run-time environment. The application 

uses .NET Framework 4.5, which means that support for Windows XP was dropped 

out. Although several customers still use XP as their primary operating system, .NET 

Framework evolves at such a fast pace, that a decision to lock the application to an old 

technology could not be made. 

 

 



57 

 

 

Windows Presentation Foundation 

The user interface was developed with Windows Presentation Foundation (WPF). WPF 

supports Model-View-ViewModel, which is also used by some of the JavaScript frame-

works, such as. Knockout.js. WPF employs XAML to define user interface. XAML is 

also used as a definition language for Windows Modern UI applications. In reality, at 

the moment, there is no other option for desktop development in .NET stack, which is 

still developed further. 

 

Entity Framework 

Entity Framework (EF) is used for object relation mapping (ORM). Entity Framework 

supports POCOs (Plain Old CLR Object), so the domain does not have to be coupled 

to Entity Framework. Entity Framework’s performance also reached a reasonable level 

with .NET 4.5. Another option would have been NHibernate, but at the moment the 

performance of these two is quite similar, so it was decided to choose the .NET stack 

option. 

 

Windows Communication Foundation 

Web Services were developed with Windows Communication Foundation (WCF). WCF 

might be a little heavy for the requirements of the application, but it will handle every 

situation that will be needed. WCF comes with the .NET stack and it is also used for 

inter-process communication. 

 

Managed Extensibility Framework 

Managed Extensibility Framework (MEF) was chosen to be the Dependency Injection 

container. MEF is a library that helps to create extendable applications and avoid hard 

dependencies. MEF comes with .NET Framework and does not require any additional 

libraries. It supports dynamic module loading, which is used in the user interface. 

 

Event Aggregator  

Event Aggregator is used for user interfaces internal messaging. The Event Aggregator 

service is a container for events, which helps to publish an event between decoupled 

modules. Event Aggregator is included in Microsoft Prism. Prism is a composite appli-

cation library which helps to build and design rich-feature WPF applications. 

 

 

 



58 

 

 

SQL Server Express LocalDB 

Microsoft SQL Server Express LocalDB is used for data storage. It does not require 

any configuration, only the library files installation on the target computer.  This makes 

the application installation much easier, as there is no chance of SQL Server configura-

tion errors. Also up scaling from LocalDB to full SQL Server is possible without any 

changes to the application. 

 

3rd Party Technologies 

The user interface uses 3rd party application libraries. These libraries provide better 

user interface controls than the .NET Framework, so although these libraries are not 

free of charge, it will save time from user interface development. Two common library 

providers are DevExpress and Telerik. As the components provided by these compa-

nies are fairly similar and developers had experience with DevExpress from previous 

products, decision to choose DevExpress was made based on that. 

 

 

5.2 Patterns 

 

Patterns are common approaches to problems which have been formalized and are 

often considered good programming practices. This chapter explains the most visible 

patterns used in this architecture. 

 

5.2.1 Dependency Injection and Service Locator 

 

Dependency injection and service locator take different approaches to achieve inver-

sion of control. With dependency injection, dependencies are injected to components 

from outside. This behaviour is illustrated in figure 47.  

 



59 

 

 

XBuilder Creates

Class A

Injects Dependency

Interface A

Uses

 

Figure 47. Dependency injection 

 

With the service locator, the component uses the service locator to get the dependen-

cies it needs. This is illustrated in figure 48. 

 

X Service LocatorUses

Class A

Class B

Locates

Locates

Interface A

Interface B

 

Figure 48. Service Locator 

 

A benefit of the dependency injection is that the component is independent from the 

dependency mechanism, as with service locator, the component needs to be aware of 

the dependency mechanism. A benefit of the service locator is that the component 

does not need to advertise the dependencies it needs to external components. [17] 

 

 

 



60 

 

 

5.2.2 Model-View-ViewModel 

 

Model-View-ViewModel (MVVM) is a presentation layer pattern, where the user inter-

face (View) is separated from functionality (ViewModel) and data (Model). MVVM uses 

data binding to bind models and functionality to view. In this way view should not have 

any code in it. The separation and communication is shown in figure 49. 

 

 

Figure 49. MVVM pattern [18] 

 

A benefit of MVVM is separation. Designers can work on views, even when functionali-

ty on view models is not ready, by using the design time data, and developers can fo-

cus on creating functionality. View models are also unit-testable, so the presentation 

layer does not only have to rely on automated user interface tests. 

 

5.2.3 Service Layer 

 

A Service Layer defines an application boundary and its available operations from the 

perspective of the external components.  

 



61 

 

 

 

Figure 50. Service layer [7, 133] 

 

The service layer interacts with the application logic and domain logic and it encapsu-

lates the functionality of the application. 

 

5.2.4 Domain Model 

 

Domain modelling is the most important part of software design. Having a good model 

allows developers and a business to have a common language, which in turn makes 

the communication of requirements and the maintenance of the application much sim-

pler. Also having a good model is a synonym for having a low representational gap, 

which means that the main concepts and their relationships from the real business 

model are represented almost identically in the domain model of the software. [23] 

 

The domain model pattern allows one to design a domain model for the system in total 

freedom, without feeling a bound by platform and database constraints. The abstract 

domain model describes a number of processes and expresses some logic. This 

means that the domain model for an application should be the same for another appli-

cation doing business in the same manner. [3] 

 

  



62 

 

 

5.2.5 Façade 

 

A façade defines a higher-level interface for the subsystem. A façade shields the user 

from the complex details and simplifies the usage of the subsystem.  It also decouples 

the subsystem from the user. Figure 51 illustrates the client connecting to a façade. 

 

 

Figure 51. Client connects to Façade [16] 

 

The facade object should be a fairly simple facilitator. It should not become an all-

knowing “God” object, which is then an anti-pattern. 

 

5.2.6 Repository 

 

A repository mediates between the domain and data mapping layers. It uses a collec-

tion-like interface, which allows access to domain objects. Figure 52 shows the reposi-

tory’s connection to the data source and business logic. 

 

 

Figure 52. Repository [19] 

 



63 

 

 

A repository provides an object-oriented view of a data storage by encapsulating the 

stored set of objects and the operations that are performed over those objects. The 

repository provides a clean separation and one-way dependency between the domain 

and the data mapping layer. 

 

5.2.7 Mapper 

 

A mapper is an insulating layer between modules. It controls communications between 

two independent modules which are ignorant of each other. 

 

Mapper X

Data Service

Repository X

Mapper Base

Mapper Y

Object with 

Information and 

Data

Repository Y

Database

 

Figure 53. Mapper for storing data. 

 

In figure 53, data service receives the data from two different providers, X and Y. Data 

service passes the data to the mapper linked to the provider (either Mapper X or Map-

per Y). In this way the service does not have to know how to link the data correctly to 



64 

 

 

the repositories and the repository does not have to have knowledge of any other in-

formation besides the data. 

 

 

5.3 Anti-Patterns 

 

An anti-pattern is an opposite of a pattern, so it is often considered a bad programming 

practice. Two anti-patterns used in this architecture, are described here, as well as 

reasons for their use. 

 

5.3.1 Anemic Domain Model 

 

A domain model is an object model of the domain. The basic idea of the domain model 

is that the functionality is included in models. In an anemic domain model functionality 

is in a separate class and the model is just getters and setters for the data. This is usu-

ally considered an anti-pattern. [25]  

 

PlateLayout used in this example, defines the specifications and content of a micro-

plate, which is a plate with multiple wells as small test tubes. 

 

Id
Size
Description
Samples

Load()
Save()
Modify()
Find()
Validate()
Calculate()

PlateLayout(size)

PlateLayout

 

Figure 54. Model with data and functionality 

 

In the full model, as shown in figure 54, PlateLayout-class has the functionality for cre-

ate the object and persistence of the data. In figure 55 the factory and the repository 

patterns are added to the model, so the full model is separated into multiple classes. 

 



65 

 

 

Load()
Save()

PlateRepository

Id
Size
Description
Samples

Modify()
Find()
Validate()
Calculate()

PlateLayout
Create24()
Create96()

PlateFactory

 

Figure 55. Model, Factory and Repository 

 

By following the Single Responsibility Principle, PlateLayout is divided into a class with 

functionality and a class with a model. This is shown in figure 56. When this division is 

made, the model is an anemic domain model. 

 

Modify(plate)
Find(plate)
Validate(plate)

PlateService

Calculate(plate)

ResultService
Load()
Save()

PlateRepository

Create24()
Create96()

PlateFactory

Id
Size
Description
Samples

PlateLayout

 

Figure 56. Model, Factory, Repository and Services 

 

Having an anemic domain model in this kind of situation is completely acceptable. This 

makes the code understandable, testable and models can be used as a light weight 

data transfer objects. Dividing the functionality from a model into service classes is 

mainly a matter of taste. 

 

5.3.2 Service Locator 

 

The service locator can also be an anti-pattern. This is because when a class has the 

service locator’s implementation, it can request anything it wants from the service loca-

tor. This kind of behaviour is similar to a situation when the application would have all 

dependencies configured to the service locator as global variables and global variables 

are an anti-pattern. The service locator also hides a class’s dependencies, causing run-

time errors instead of compile-time errors. It also makes the code more difficult to main-

tain because it becomes unclear when one would be introducing a breaking change. 



66 

 

 

[24] This does not mean that the service locator is automatically an anti-pattern, but 

there is an option that it can be used in a "wrong" way. It is recommended that de-

pendencies should be injected through the constructor, rather than letting the class use 

the service locator as it wishes. 

  



67 

 

 

6 Conclusions 

 

The aim of the project was to design architecture for a workstation software platform to 

control the connected laboratory instruments. The platform had to be modifiable, as it 

had to be able to support multiple different scenarios and different laboratory instru-

ments, from which all are not yet known. It had to be maintainable, as it will have a long 

lifespan, during which it will have multiple modifications. At the stage when the docu-

ment was written, the application with the architecture described here had been under 

development for a couple of man-years. As the architecture was designed in an itera-

tive way, it has changed and will continue to change during the application’s life cycle.  

 

In general, designed decoupled and modular architecture fits the application well. It 

gives enough flexibility so the design can provide functionality for different use cases, 

and changes to the design will only affect small parts of the architecture. This kind of 

architecture allows the application to be used in multiple different ways, for example as 

a centralized service or as a stand-alone application, and the needed modules can be 

used with an automation service. 

 

Platforms should not be considered as a universal solution for everything. If applica-

tions that platform should support are not related, instead of a platform, re-usable mod-

ules should be used and companies should have ready-made skeletons for different 

parts of the application. 

 

The designed architecture may sometimes be too general, as when some decisions 

were made there was not enough knowledge of the final use cases. Although the archi-

tecture was aimed to be kept as simple as possible, having threading, abstraction and 

factories make it complex. It was still easy to develop even without having a full under-

standing of the whole architecture. 

 

Finally, some main concerns and problems that arose during development are ad-

dressed here. 

 

The performance of the application is and will be one of the main concerns. It is ex-

tremely important that an application is responsive all the time and a user gets a re-

sponse for all the actions he/she makes. Of course, the application must perform these 

actions in a reasonable time, so only having responsiveness all the time is not enough. 



68 

 

 

To ensure this, the performance of the application is monitored continuously during the 

development, as the application has a habit of slowing down when more features are 

added. There are some automated tests that measure the performance, and they are 

executed with the continuous integration build, but primarily performance monitoring is 

done manually with the help of commercial applications.  

 

Another big concern with the architecture was instrument communication as a new 

version of the application has to support multiple simultaneous instruments. Communi-

cation includes sending commands, handling responses and saving data into data 

storage. A concurrent model that was designed and implemented is working well, so 

handling responses from multiple instruments is not blocking any processing and it 

does not have too high CPU usage. 

 

The Entity Framework brought various problems regarding configuration and data up-

dating. The performance has been good enough as the latest version supports query 

caching. To cache most common queries, the application does queries in the back-

ground so when a user requests the data, the query will be fast. The data model in use 

has too much inheritance and child references and this causes problems with the Entity 

Framework. Unfortunately these problems came out too late, so at that point it was not 

worth changing it into another solution. If the decision could be made again, a more 

traditional ADO.NET (datasets and procedures / SQL-queries) approach instead of 

Entity Framework would be considered. The abstraction level of the data context would 

be moved to a repository. This would make the usage of the EF data context or any 

selected context easier. Currently it seems that the abstraction level is on an unneces-

sary low level. 

 

Because many of the classes have background processing and environments are cre-

ated with a dependency injection container, multiple checks needs to be done when 

disposing the objects when closing the session. DI container keeps references to cre-

ated objects and will not allow classes that have background processes to be garbage 

collected automatically. As known, some customers keep this application on for 

months, and this is a potential place for memory leaks. 

 

The decision to use the façade to unify asynchronous execution was good. In this way 

it is impossible to make blocking calls from the back end. The façade gives a good 

separation between the user interface and the back end. Now user interface develop-



69 

 

 

ers do not have to have knowledge of the back end’s internal functionality, which 

makes development simpler. 

 

In the end, everything seems to be going quite smoothly and there might be a happy 

ending for this platform. However that is something to be seen in a few years.  



70 

 

 

References 

 

1 Plessel Todd. Data Model Project, Quality Assurance Plan [online]. Lockheed 
Martin / US EP; 2 November 2002.  
URL: http://codecourse.sourceforge.net/materials/Quality-Assurance-Plan.html 
Accessed: 10 July 2012 

 

2 Csgillespie. CPU and GPR Trends over Time [online]. 25 January 2011.  
URL: http://csgillespie.wordpress.com/tag/ggplot2/ 
Accessed: 18 July 2012 

 

3 Glass Robert L. Facts and Fallacies of Software Engineering. Addison-Wesley; 
2002. 

 

4 Esposito Dino. Microsoft .NET Architecting Applications for the Enterprise. Mi-
crosoft Press; 2008. 

 

5 Arking John, Millett Scott. Professional Enterprise .NET. Wrox; 2009. 

 

6 Microsoft Spain. Domain Oriented N-Layered Application [online]. 21 November 
2012.  
URL: http://microsoftnlayerapp.codeplex.com/  
Accessed: 18 July 2013 

 

7 Fowler Martin. Patterns of Enterprise Application Architecture. Addison-Wesley 
Professional; 2002. 

 

8 Martin Robert C. Clean Architecture [online]. 22 November 2011.  
URL: http://blog.8thlight.com/uncle-bob/2011/11/22/Clean-Architecture.html  
Accessed: 1 August 2012 

 

9 Cockburn Alistair. Hexagonal Architecture [online]. 19 June 2008.  
URL: http://alistair.cockburn.us/Hexagonal+architecture  
Accessed: 1 August 2012 

 

10 Martin Robert C. Clean Architecture presentation [online]. 7 June 2012.  
URL: http://ndcoslo.oktaset.com/t-4868  
Accessed: 1 August 2012 

http://codecourse.sourceforge.net/materials/Quality-Assurance-Plan.html


71 

 

 

11 Albahari Joseph, Albahari Ben. C# 4.0 in a Nutshell. O’Reilly Media; 2010 

 

12 Leonard Tom. Dragged Kicking and Screaming: Source Multicore [online]. Valve; 
9.3.2007.  
URL:http://www.valvesoftware.com/publications/2007/GDC2007_SourceMulticore
.pdf  
Accessed: 20 July 2012 

 

13 Palermo Jeffrey. The Onion Architecture [online]. 29 July 2008.  
URL: http://jeffreypalermo.com/blog/the-onion-architecture-part-1/  
Accessed: 15 July 2012 

 

14 Martin Robert C. Clean Architecture [online]. 13 August 2012.  
URL: http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html 
Accessed: 22 October 2012 

 

15 Martin Robert C. Screaming Architecture [online]. 30 September 2011.  
URL: http://blog.8thlight.com/uncle-bob/2011/09/30/Screaming-Architecture.html 
Accessed: 22 October 2012 

 

16 Design Patterns [online]. Sourcemaking.com; 2009.  
URL: http://sourcemaking.com/design_patterns  
Accessed: 6 November 2013 

 

17 Burns Kyle. Dependency Injection vs. Service Locator [online]. 27 April 2012. 
URL: http://geekswithblogs.net/KyleBurns/archive/2012/04/27/dependency-
injection-vs.-service-locator.aspx  
Accessed: 6 November 2013 

 

18 Shen HengBin. MVVM Pattern Simplified [online]. 2 July 2012.  
URL: http://shenhengbin.wordpress.com/2012/07/02/mvvm-pattern-simplified/ 
Accessed: 6 November 2013 

 

19 The Repository Pattern [online]. MSDN – Microsoft.  
URL: http://msdn.microsoft.com/en-us/library/ff649690.aspx  
Accessed: 12 November 2012 

 

20 What is an Enterprise Application? [online] MSDN – Microsoft.  
URL: http://msdn.microsoft.com/en-us/library/aa267045%28v=vs.60%29.aspx 
Accessed: 20 November 2013 



72 

 

 

21 Namespace Naming Guidelines [online]. MSDN – Microsoft.  
URL: http://msdn.microsoft.com/en-us/library/893ke618%28v=vs.71%29.aspx 
Accessed: 16 August 2012 

 

22 Creating N-Tier Application with C#. Pluralsight; 2012.  
URL: http://pluralsight.com/training/Courses/TableOfContents/n-tier-apps-part1 
Accessed: 5 January 2013 

 

23 Gutierrez Alberto. How to create a good domain model. Top 10 advices [online]. 
17 May 2010.  
URL: http://www.makinggoodsoftware.com/2010/05/17/how-to-create-a-good-
domain-model-top-10-advices/  
Accessed: 5 January 2013 

 

24 Gauffin Jonas. Service locator is not an anti pattern [online]. 9 December 2012. 
URL: http://blog.gauffin.org/2012/09/service-locator-is-not-an-anti-pattern/  
Accessed: 5 January 2013 

 

25 Fowler Martin. Anemic Domain Model [online]. 25 Novermber 2003.  
URL: http://www.martinfowler.com/bliki/AnemicDomainModel.html  
Accessed: 7 April 2013 

 

26 G. M. Amdahl. Validity of the Single-Processor Approach to Achieving Large 
Scale Computing Capabilities. In AFIPS Conference Proceedings, pages 483–
485, 1967. 

 

27 Amhdal’s Law, Wikipedia. 
URL: http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg  
Accessed: 7 April 2013 

 

28 Martin Robert C. Design Principles and Design Patterns. 
www.objectmentors.com. 2000. 
URL:http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf 

 

29 Martin Robert C. Agile Principles, Patterns, and Practices in C#, Prentice Hall. 20 
July 2006. 

 

30 Professional Enterprise .NET [online] 10 Jan 2011  
URL: http://proent.codeplex.com/  
Accessed: 7 April 2013 


